Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
J Hum Evol ; 189: 103470, 2024 04.
Article in English | MEDLINE | ID: mdl-38552260

ABSTRACT

Sex is a biological trait fundamental to the study of hominin fossils. Among the many questions that can be addressed are those related to taxonomy, biological variability, sexual dimorphism, paleoobstetrics, funerary selection, and paleodemography. While new methodologies such as paleogenomics or paleoproteomics can be used to determine sex, they have not been systematically applied to Pleistocene human remains due to their destructive nature. Therefore, we estimated sex from the coxal bone of the newly discovered pelvic remains of the Regourdou 1 Neandertal (Southwest France, MIS 5) based on morphological and metric data employing two methods that have been recently revised and shown to be reliable in multiple studies. Both methods calculate posterior probabilities of the estimate. The right coxal bone of Regourdou 1 was partially reconstructed providing additional traits for sex estimation. These methods were cross validated on 14 sufficiently preserved coxal bones of specimens from the Neandertal lineage. Our results show that the Regourdou 1 individual, whose postcranial skeleton is not robust, is a male, and that previous sex attributions of comparative Neandertal specimens are largely in agreement with those obtained here. Our results encourage additional morphological research of fossil hominins in order to develop a set of methods that are applicable, reliable, and reproducible.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Male , Neanderthals/anatomy & histology , Fossils , Genomics , Paleontology , France
2.
Anat Rec (Hoboken) ; 306(10): 2484-2513, 2023 10.
Article in English | MEDLINE | ID: mdl-37010952

ABSTRACT

This article provides an ontogenetically-based comparative description of the Guercy 3 partial child's maxilla with Rdm2 -RM1 and unerupted RI2 -RP4 from Baume Moula-Guercy (MIS 5e) and examines its affinities to European and Middle Eastern Middle-to-Late Pleistocene (≈MIS 14-MIS 1) Homo. Description of the Guercy 3 maxilla and dentition (7.0 year ± 0.9 month) is based on observations of original fossils, casts, CT scans, literature descriptions, and virtual reconstructions. Our ontogenetic sample comprises a Preneanderthal-Neanderthal group and a Homo sapiens group. These groups are subdivided into (1) Preneanderthals (≈MIS 14-9), Early Neanderthals (MIS 7-5e), and Late Neanderthals (MIS 5d-3), and (2) Middle (MIS 5), Upper (MIS 3-2), and Late Upper Paleolithic (≈MIS 1), and recent H. sapiens. Standard techniques were employed for measurements and developmental age determinations.The Guercy 3 maxilla lacks changes found in Late Neanderthals, including the positioning of the root of the zygomatic process, infraorbital and nasal plates, premaxilla, buccal and labial alveolus, maxillary sinus, nasal cavity, and verticality of anterior tooth implantation. The morphology of the Guercy 3 maxilla more closely approximates that of Sima de los Huesos Preneanderthals, while the dentition more closely approximates the Early-Late Neanderthal condition. Maxillary remains of children and juveniles between MIS 14-MIS 5e are rare, and the available sample is fragmentary and distorted. Although fragmentary, the Guercy 3 maxilla is undistorted and provides new insights into the evolution of the midface in Neanderthals.


Subject(s)
Hominidae , Neanderthals , Humans , Child , Animals , Neanderthals/anatomy & histology , Maxilla/anatomy & histology , Skull/anatomy & histology , France , Fossils , Hominidae/anatomy & histology
3.
Article in English | MEDLINE | ID: mdl-37001690

ABSTRACT

Neanderthals are our one of our closest evolutionary cousins, but while they evolved in Eurasia, we (anatomically modern humans, AMH) originated in Africa. This contrasting evolutionary history has led to morphological and genetic distinctions between our species. Neanderthals are characterised by a relatively stocky build, high body mass, proportionally wide bodies and shorter limbs, a bell-shaped ribcage with a wide pelvis, and a long, low cranial vault compared with AMH. Classic readings of Neanderthal morphology link many of these traits to cold climate adaptations, however these interpretations have been questioned and alternative hypotheses including behavioural factors, dietary adaptations, locomotor specialisations, evolutionary history and neutral evolutionary processes have been invoked. Compared with AMH, Neanderthals may have been adapted for strength and power rather than endurance and may have consumed a diet high in animal products. However, reviewing these hypotheses highlights a number of limitations in our understanding of contemporary human physiology and metabolism, including the relationship between climate and morphology in AMH and Neanderthals, physiological limits on protein consumption, and the relationship between gut morphology and diet. As various relevant factors are clearly linked (e.g. diet, behaviour, metabolism, morphology, activity), ultimately a more integrated approach may be needed to fully understand Neanderthal biology. Variation among contemporary AMHs may offer, with caveats, a useful model for understanding the evolution of both Neanderthal and modern human characteristics, which in turn may further deepen our understanding of variability within and between contemporary humans. Neanderthals; Anatomically modern humans; morphology; climate adaptation; power adaptations; metabolism; diet; physiology; endurance running.


Subject(s)
Neanderthals , Humans , Animals , Neanderthals/anatomy & histology , Neanderthals/physiology , Acclimatization , Climate , Adaptation, Physiological , Cold Climate , Fossils
4.
J Hum Evol ; 178: 103347, 2023 05.
Article in English | MEDLINE | ID: mdl-36966596

ABSTRACT

Results of traditional metric and nonmetric assessments suggest that the Xuchang hominin shares features with Neanderthals. To comprehensively compare the nuchal morphology of XC 2 to those of the genus Homo, we conduct a three-dimensional geometric morphometric study with 35 cranial landmarks and surface semilandmarks of XC 2, Homo erectus, Middle Pleistocene humans, Neanderthals, and early and recent modern humans. Results reveal that the centroid size of XC 2 is larger than that of early and recent modern humans and can only be compared to that of Middle Pleistocene humans and H. erectus. Early and recent modern humans share a nuchal morphology distinct from archaic hominins (Ngandong H. erectus, Middle Pleistocene humans, and Neanderthals), except for SM 3, Sangiran 17, and Asian and African H. erectus. Although Ngandong specimens differ from the other H. erectus, it is unclear whether this represents a temporal or spatial trend in the process of evolution of this species. The nuchal morphological resemblance between Middle Pleistocene humans and Neanderthals may be attributed to similar cranial architecture and cerebellar shape. The great nuchal morphological variation shared by recent modern humans may indicate a particular developmental pattern. In conclusion, the nuchal morphology of different human groups is highly variable and may be caused by different factors including brain globularization and developmental plasticity. XC 2 shares similar nuchal morphology with Middle Pleistocene humans and Neanderthals, but these results are insufficient to fully resolve the taxonomic status of XC 2.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Neanderthals/anatomy & histology , Biological Evolution , Fossils , Skull/anatomy & histology , Hominidae/anatomy & histology
5.
Prog Brain Res ; 275: 73-92, 2023.
Article in English | MEDLINE | ID: mdl-36841571

ABSTRACT

It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Biological Evolution , Brain/anatomy & histology , Neanderthals/anatomy & histology , Neanderthals/genetics , Primates , Phenotype , Genotype
6.
J Hum Evol ; 174: 103291, 2023 01.
Article in English | MEDLINE | ID: mdl-36493597

ABSTRACT

Since the discovery of a human mandible in 1887 near the present-day city of Banyoles, northeastern Spain, researchers have generally emphasized its archaic features, including the lack of chin structures, and suggested affinities with the Neandertals or European Middle Pleistocene (Chibanian) specimens. Uranium-series and electron spin resonance dating suggest the mandible dates to the Late Pleistocene (Tarantian), approximately ca. 45-66 ka. In this study, we reassessed the taxonomic affinities of the Banyoles mandible by comparing it to samples of Middle Pleistocene fossils from Africa and Europe, Neandertals, Early and Upper Paleolithic modern humans, and recent modern humans. We evaluated the frequencies and expressions of morphological features and performed a three-dimensional geometric morphometric analysis on a virtual reconstruction of Banyoles to capture overall mandibular shape. Our results revealed no derived Neandertal morphological features in Banyoles. While a principal component analysis based on Euclidean distances from the first two principal components clearly grouped Banyoles with both fossil and recent Homo sapiens individuals, an analysis of the Procrustes residuals demonstrated that Banyoles did not fit into any of the comparative groups. The lack of Neandertal features in Banyoles is surprising considering its Late Pleistocene age. A consideration of the Middle Pleistocene fossil record in Europe and southwest Asia suggests that Banyoles is unlikely to represent a late-surviving Middle Pleistocene population. The lack of chin structures also complicates an assignment to H. sapiens, although early fossil H. sapiens do show somewhat variable development of the chin structures. Thus, Banyoles represents a non-Neandertal Late Pleistocene European individual and highlights the continuing signal of diversity in the hominin fossil record. The present situation makes Banyoles a prime candidate for ancient DNA or proteomic analyses, which may shed additional light on its taxonomic affinities.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Spain , Proteomics , Hominidae/anatomy & histology , Mandible/anatomy & histology , Neanderthals/anatomy & histology , Fossils , Biological Evolution
7.
Anat Rec (Hoboken) ; 306(3): 564-593, 2023 03.
Article in English | MEDLINE | ID: mdl-36336759

ABSTRACT

We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.


Subject(s)
Hominidae , Neanderthals , Adult , Animals , Humans , Neanderthals/anatomy & histology , Hominidae/anatomy & histology , Skull/anatomy & histology , Brain , France , Fossils , Biological Evolution
8.
Sci Rep ; 12(1): 22231, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564491

ABSTRACT

The application of dental wear study to murids has always been ruled out because of their omnivorous diet, which does not leave significant wear on the dentition. Nevertheless, in our work we select Apodemus sylvaticus (wood mouse) as the object of study for several reasons: its seasonal diet, its ability to resist the gastric juices of predators, the fact that it has not undergone major morphological changes since its appearance 3 million years ago, and its widespread distribution throughout much of Europe and part of Africa. The importance of this work lies in the modifications we make to the dental wear methodology for its application to murids. These enable us to obtain quantitative data on the entire tooth surface. The sample chosen was a total of 75 lower first molars from two different archaeological sites: Teixoneres cave and Xaragalls cave. The chronology of the samples chosen ranges from Marine Isotope Stages 5-3. The data obtained reveal that the part of the tooth that shows most wear is the distal part (entoconid). Furthermore, the results provide us with relevant information on the types of accumulations of remains in the caves (short vs. long term), as well as on the seasonality of Neanderthal occupations during the Upper Pleistocene (MIS5-3) of the northeastern Iberian Peninsula.


Subject(s)
Neanderthals , Tooth Wear , Animals , Mice , Fossils , Mammals , Molar , Neanderthals/anatomy & histology
9.
J Hum Evol ; 172: 103253, 2022 11.
Article in English | MEDLINE | ID: mdl-36162354

ABSTRACT

The early Middle Pleistocene human material from Boxgrove (West Sussex, UK) consists of a partial left tibia and two lower incisors from a separate adult individual. These remains derive from deposits assigned to the MIS 13 interglacial at about 480 ka and have been referred to as Homo cf. heidelbergensis. The much larger skeletal sample from the Sima de los Huesos (Atapuerca, Spain) is dated to the succeeding MIS 12, at about 430 ka. This fossil material has previously been assigned to Homo heidelbergensis but is now placed within the Neanderthal clade. Because of the scarcity of human remains from the Middle Pleistocene and their morphological variability, this study assessed whether the Boxgrove specimens fit within the morphological variability of the homogeneous Sima de los Huesos population. Based on morphometric analyses performed against 22 lower incisors from Sima de los Huesos and published material, the data from the Boxgrove incisors place them comfortably within the range of Sima de los Huesos. Both assemblages present robust incisors distinct from the overall small recent Homo sapiens incisors, and Boxgrove also aligns closely with Homo neanderthalensis and some other European Middle Pleistocene hominins. Following morphological and cross-sectional analyses of the Boxgrove tibia compared to seven adult Sima de los Huesos specimens and a set of comparative tibiae, Boxgrove is shown to be similar to Sima de los Huesos and Neanderthals in having thick cortices and bone walls, but in contrast resembles modern humans in having a straight anterior tibial crest and a suggestion of a lateral concavity. Based on the patterns observed, there is no justification for assigning the Boxgrove and Sima de los Huesos incisors to distinct paleodemes, but the tibial data show greater contrasts and suggest that all three of these samples are unlikely to represent the same paleodeme.


Subject(s)
Hominidae , Neanderthals , Animals , Adult , Humans , Fossils , Cross-Sectional Studies , Hominidae/anatomy & histology , Neanderthals/anatomy & histology , Tibia/anatomy & histology , Spain
10.
Sci Rep ; 12(1): 8841, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614148

ABSTRACT

North Africa is a key area for understanding hominin population movements and the expansion of our species. It is home to the earliest currently known Homo sapiens (Jebel Irhoud) and several late Middle Stone Age (MSA) fossils, notably Kébibat, Contrebandiers 1, Dar-es-Soltane II H5 and El Harhoura. Mostly referred to as "Aterian" they fill a gap in the North African fossil record between Jebel Irhoud and Iberomaurusians. We explore morphological continuity in this region by quantifying mandibular shape using 3D (semi)landmark geometric morphometric methods in a comparative framework of late Early and Middle Pleistocene hominins (n = 15), Neanderthals (n = 27) and H. sapiens (n = 145). We discovered a set of mixed features among late MSA fossils that is in line with an accretion of modern traits through time and an ongoing masticatory gracilization process. In Northern Africa, Aterians display similarities to Iberomaurusians and recent humans in the area as well as to the Tighenif and Thomas Quarry hominins, suggesting a greater time depth for regional continuity than previously assumed. The evidence we lay out for a long-term succession of hominins and humans emphasizes North Africa's role as source area of the earliest H. sapiens.


Subject(s)
Hominidae , Neanderthals , Africa, Northern , Animals , Biological Evolution , Fossils , Hominidae/anatomy & histology , Humans , Mandible/anatomy & histology , Neanderthals/anatomy & histology
11.
Anat Rec (Hoboken) ; 305(8): 2038-2064, 2022 08.
Article in English | MEDLINE | ID: mdl-35394685

ABSTRACT

The late archeologist Glynn Isaac first applied the term "muddle in the middle" to a poorly understood period in the Middle Pleistocene human fossil record. This study uses the nasopharyngeal boundaries as a source of traits that may inform this unclear period of human evolution. The nasopharynx lies at the nexus of several vital physiological systems, yet relatively little is known about its importance in human evolution. We analyzed a geographically diverse contemporary Homo sapiens growth series (n = 180 adults, 237 nonadults), Homo neanderthalensis (La Chapelle aux Saints 1, La Ferrassie 1, Forbes Quarry 1, Monte Circeo 1, and Saccopastore 1), mid-Pleistocene Homo (Atapuerca 5, Kabwe 1, Petralona 1, and Steinheim 1), and two Homo erectus sensu lato (KNM-ER 3733 and Sangiran 17). Methods include traditional (Analysis 1) and 3D geometric morphometric analysis (Analysis 2). H. erectus exhibited tall, narrow nasopharyngeal shape, a robust, ancestral morphology. Kabwe 1 and Petralona 1 plotted among H. sapiens in Analysis 2, exhibiting relatively shorter and vertical cartilaginous Eustachian tubes and vertical medial pterygoid plates. Atapuerca 5 and Steinheim 1 exhibited horizontal vomeral orientation similar to H. neanderthalensis, indicating greater relative soft palate length and anteroposterior nasopharynx expansion. They may exhibit synapomorphies with H. neanderthalensis, supporting the accretionary hypothesis. Species-level differences were found among H. sapiens and H. neanderthalensis, including relatively longer dilator tubae muscles and extreme facial airorhynchy among Neanderthals. Furthermore, H. neanderthalensis were autapomorphic in exhibiting horizontal pterygoid plate orientation similar to human infants, suggesting that they may have had inferiorly low placement of the torus tubarius and Eustachian tube orifice on the lateral nasopharyngeal wall in life. This study supports use of osseous nasopharyngeal boundaries both for morphological characters and understanding evolution of otitis media susceptibility in living humans.


Subject(s)
Hominidae , Neanderthals , Animals , Biological Evolution , Fossils , Hominidae/anatomy & histology , Humans , Nasopharynx , Neanderthals/anatomy & histology
12.
Sci Rep ; 12(1): 4739, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304879

ABSTRACT

Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.


Subject(s)
Hominidae , Neanderthals , Adolescent , Adult , Animals , Bone and Bones/anatomy & histology , Femur/physiology , Fossils , Hominidae/anatomy & histology , Humans , Lower Extremity/anatomy & histology , Neanderthals/anatomy & histology , Tomography, X-Ray Computed
13.
Anat Rec (Hoboken) ; 305(8): 2030-2037, 2022 08.
Article in English | MEDLINE | ID: mdl-34989121

ABSTRACT

The cranial anatomy of Homo neanderthalensis and Homo sapiens is well documented in the paleoanthropological and medical literature. However, there are few high-quality visual guides of their comparative morphology. We give here a detailed description of the anatomy of two important fossil specimens, La Chapelle-aux-Saints 1 and abri Pataud 1, based on high-resolution imaging data with each specimen representing the respective morphologies of H. neanderthalensis and H. sapiens. We describe the comparative morphology of external, endocranial, and internal characteristics of the cranium, with a focus on the petrous and tympanic portions of the temporal bone. This descriptive approach shows differences between our specimens, including in positions of cerebral components relative to cranial structures and patterns of dural sinus drainage. Numerous external and internal differences in the shape of the petrous temporal are also described, including its articulation with the tympanic bone and the orientation of the petrotympanic crest. The presence of a large protuberance between the osseous Eustachian tube orifice and carotid foramen in H. neanderthalensis suggests that the levator veli palatini muscle took origin more laterally than the dilator tubae arm of the tensor veli palatini muscle, a feature shared with H. sapiens. The overall pattern that emerges is one in which two species have undergone large-scale evolutionary changes in a functionally critical region. Such differences necessitate high-quality visualization and consideration of both internal and external morphology.


Subject(s)
Eustachian Tube , Hominidae , Neanderthals , Animals , Eustachian Tube/anatomy & histology , Fossils , Hominidae/anatomy & histology , Humans , Neanderthals/anatomy & histology , Palatal Muscles , Skull Base/anatomy & histology , Skull Base/diagnostic imaging
14.
J Hum Evol ; 163: 103119, 2022 02.
Article in English | MEDLINE | ID: mdl-35026677

ABSTRACT

The Late Middle Pleistocene hominin fossils from the Xujiayao site in northern China have been closely studied in light of their morphological variability. However, all previous studies have focused on separated cranial fragments. Here, we report the first reconstruction of a fairly complete posterior cranium, Xujiayao 6 (XJY 6), confidently dated to ∼200-160 ka, which facilitated an assessment of its overall cranial size. XJY 6 was reconstructed from three of the original fragments-the PA1486 (No.7/XJY 6a) occipital bone, PA1490 (No.10/XJY 6b) right parietal bone, and PA1498 (No.17/XJY 15) left temporal bone-which originated from the same young adult individual. The XJY 6 endocranial capacity, estimated by measuring endocranial volume, was estimated using multiple regression formulae derived from ectocranial and endocranial measurements on select samples of Pleistocene hominins and recent modern humans. The results indicate that the larger pooled sample of both Pleistocene and recent modern humans was more robust for the endocranial capacity estimate. Based on the pooled sample using the ectocranial and endocranial measurements, we conservatively estimate the XJY 6 endocranial volume to be ∼1700 cm3 with a 95% confidence interval of 1555-1781 cm3. This is close to Xuchang 1, which dates to 125-105 ka and whose endocranial volume is ∼1800 cm3. Thus, XJY 6 provides the earliest evidence of a brain size that falls in the upper range of Neanderthals and modern Homo sapiens. XJY 6, together with Xuchang 1, Homo floresiensis, Homo luzonensis, and Homo naledi, challenge the general pattern that brain size gradually increases over geological time. This study also finds that hominin brain size expansion occurred at different rates across time and space.


Subject(s)
Hominidae , Neanderthals , Animals , Biological Evolution , China , Fossils , Hominidae/anatomy & histology , Humans , Neanderthals/anatomy & histology , Skull/anatomy & histology , Temporal Bone/anatomy & histology
15.
Anat Rec (Hoboken) ; 305(8): 1991-2029, 2022 08.
Article in English | MEDLINE | ID: mdl-34166582

ABSTRACT

Circum-nasal and nasal cavity morphology add to the picture of the Sima de los Huesos specimens as, at one level, representing a distinct morph and, at another, displaying individual variation. They developed a robust, midline-grooved, three-dimensional spinal ridge lying anteriorly in the nasal cavity floor that was distended posteriorly over the nasal cavity floor, and, typically, an expansive, three-dimensional patch of rugose bone on the nasal cavity wall where a conchal crest would otherwise lie. They vary, for example, in degree of topographic relief of the nasal cavity wall, expression of the spinal ridge, and development of nasal crests and fossae. Lacking an anterior nasal spine, Sima specimens differ from extant and most fossil Homo sapiens, some specimens attributed to H. heidelbergensis, and the Gran Dolina partial face, whose anterior nasal spine is a superoanterior distention of the nasoalveolar clivus, and also from Neanderthals, whose anterior nasal spine projects anteriorly away from the nasoalveolar clivus. Comparison of Neanderthals, the Sima hominin, and specimens regarded as H. heidelbergensis calls for re-evaluating the integrity of "heidelbergensis" and rethinking the phylogenetic relationships of them all. To precisely describe the numerous features and combinations thereof of the nasal region in Sima specimens, and compare them with Neandertals and "H. heidelbergensis", we developed terminology that is applicable not only to hominins, but to mammals in general.


Subject(s)
Hominidae , Neanderthals , Animals , Biological Evolution , Fossils , Hominidae/anatomy & histology , Humans , Mammals , Neanderthals/anatomy & histology , Phylogeny , Spain
16.
Sci Rep ; 11(1): 21316, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716352

ABSTRACT

RUNX2 encodes the master bone transcription factor driving skeletal development in vertebrates, and playing a specific role in craniofacial and skull morphogenesis. The anatomically modern human (AMH) features sequence changes in the RUNX2 locus compared with archaic hominins' species. We aimed to understand how these changes may have contributed to human skull globularization occurred in recent evolution. We compared in silico AMH and archaic hominins' genomes, and used mesenchymal stromal cells isolated from skull sutures of craniosynostosis patients for in vitro functional assays. We detected 459 and 470 nucleotide changes in noncoding regions of the AMH RUNX2 locus, compared with the Neandertal and Denisovan genomes, respectively. Three nucleotide changes in the proximal promoter were predicted to alter the binding of the zinc finger protein Znf263 and long-distance interactions with other cis-regulatory regions. By surface plasmon resonance, we selected nucleotide substitutions in the 3'UTRs able to affect miRNA binding affinity. Specifically, miR-3150a-3p and miR-6785-5p expression inversely correlated with RUNX2 expression during in vitro osteogenic differentiation. The expression of two long non-coding RNAs, AL096865.1 and RUNX2-AS1, within the same locus, was modulated during in vitro osteogenic differentiation and correlated with the expression of specific RUNX2 isoforms. Our data suggest that RUNX2 may have undergone adaptive phenotypic evolution caused by epigenetic and post-transcriptional regulatory mechanisms, which may explain the delayed suture fusion leading to the present-day globular skull shape.


Subject(s)
Biological Evolution , Core Binding Factor Alpha 1 Subunit/genetics , Skull/anatomy & histology , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Cranial Sutures/growth & development , Craniosynostoses/genetics , Epigenesis, Genetic , Genome, Human , Hominidae/anatomy & histology , Hominidae/genetics , Humans , Mesenchymal Stem Cells , MicroRNAs/genetics , Neanderthals/anatomy & histology , Neanderthals/genetics , Osteogenesis/genetics , RNA, Long Noncoding/genetics
17.
PLoS One ; 16(8): e0253708, 2021.
Article in English | MEDLINE | ID: mdl-34437543

ABSTRACT

Neanderthal extinction has been a matter of debate for many years. New discoveries, better chronologies and genomic evidence have done much to clarify some of the issues. This evidence suggests that Neanderthals became extinct around 40,000-37,000 years before present (BP), after a period of coexistence with Homo sapiens of several millennia, involving biological and cultural interactions between the two groups. However, the bulk of this evidence relates to Western Eurasia, and recent work in Central Asia and Siberia has shown that there is considerable local variation. Southwestern Asia, despite having a number of significant Neanderthal remains, has not played a major part in the debate over extinction. Here we report a Neanderthal deciduous canine from the site of Bawa Yawan in the West-Central Zagros Mountains of Iran. The tooth is associated with Zagros Mousterian lithics, and its context is preliminary dated to between ~43,600 and ~41,500 years ago.


Subject(s)
Fossils/anatomy & histology , Neanderthals/anatomy & histology , Animals , Body Remains/anatomy & histology , History, Ancient , Iran , Tooth/anatomy & histology
18.
J Hum Evol ; 158: 103048, 2021 09.
Article in English | MEDLINE | ID: mdl-34340120

ABSTRACT

Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.


Subject(s)
Fossils , Hominidae/anatomy & histology , Metacarpal Bones/anatomy & histology , Animals , Biological Evolution , Caves , Haplorhini/anatomy & histology , Humans , Neanderthals/anatomy & histology
19.
J Hum Evol ; 157: 103026, 2021 08.
Article in English | MEDLINE | ID: mdl-34214909

ABSTRACT

Key to understanding human origins are early Homo sapiens fossils from Jebel Irhoud, as well as from the early Late Pleistocene sites Tabun, Border Cave, Klasies River Mouth, Skhul, and Qafzeh. While their upper facial shape falls within the recent human range of variation, their mandibles display a mosaic morphology. Here we quantify how mandibular shape covaries with mandible size and how static allometry differs between Neanderthals, early H. sapiens, and modern humans from the Upper Paleolithic/Later Stone Age and Holocene (= later H. sapiens). We use 3D (semi)landmark geometric morphometric methods to visualize allometric trends and to explore how gracilization affects the expression of diagnostic shape features. Early H. sapiens were highly variable in mandible size, exhibiting a unique allometric trajectory that explains aspects of their 'archaic' appearance. At the same time, early H. sapiens share a suite of diagnostic features with later H. sapiens that are not related to mandibular sizes, such as an incipient chin and an anteroposteriorly decreasing corpus height. The mandibular morphology, often referred to as 'modern', can partly be explained by gracilization owing to size reduction. Despite distinct static allometric shape changes in each group studied, bicondylar and bigonial breadth represent important structural constraints for the expression of shape features in most Middle to Late Pleistocene hominin mandibles.


Subject(s)
Fossils , Mandible/anatomy & histology , Adult , Animals , Female , Humans , Male , Neanderthals/anatomy & histology
20.
Nat Commun ; 12(1): 4481, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294692

ABSTRACT

Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.


Subject(s)
Genetic Introgression , Models, Genetic , Multifactorial Inheritance , Neanderthals/genetics , Adaptation, Physiological/genetics , Alleles , Animals , Cognition , Female , Genetic Variation , Genome, Human , Genome-Wide Association Study , Hair/anatomy & histology , Humans , Linkage Disequilibrium , Male , Neanderthals/anatomy & histology , Neanderthals/physiology , Phenotype , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...